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Abstract. We analyze recently extended high-temperature series expansions for the “Edwards-Anderson”
spin-glass susceptibility of the p-state Potts glass model on d-dimensional hypercubic lattices for the case
of a symmetric bimodal distribution of ferro- and antiferromagnetic nearest-neighbor couplings Jij = ±J .
In these star-graph expansions up to order 22 in the inverse temperature K ≡ Jβ ≡ J/kBT , the number of
Potts states p and the dimension d are kept as free parameters which can take any value. By applying several
series analysis techniques to the new series expansions, this enabled us to determine the critical coupling
Kc and the critical exponent γ of the spin-glass susceptibility in a large region of the two-dimensional
(p, d)-parameter space. We discuss the thus obtained information with emphasis on the lower and upper
critical dimensions of the model and present a careful comparison with previous estimates for special values
of p and d.

PACS. 75.10.Nr Spin-glass and other random models – 75.10.Lk Spin-glasses and other random magnets
– 64.60.Fr Equilibrium properties near critical points, critical exponents

1 Introduction

Spin-glass models are used to describe quenched, disor-
dered materials with randomly distributed, competing in-
teractions [1–4]. While the latter property is the charac-
teristic feature of all spin-glasses, for specific applications
also the spin degrees of freedom are an important ingredi-
ent of the model. The most extensively studied prototype
model is the Ising spin-glass where each spin can only
take the two different values Si = ± 1. A generalization
to p discrete states per spin, Si ∈ {1, . . . , p} is the Potts
spin-glass [5–8], which can be considered as the generic
model of anisotropic orientational glasses [9]. Materials of
this type arise from random dilution of molecular crystals
such as N2 diluted with Ar [10]. Here the model parame-
ter p is associated with the p orientations of the uniaxial
molecule in the crystal. Typical cases are p = 3, when the
molecules can align only along the x, y, and z axes of a
cubic crystal, and p = 6, when the face diagonals are the
preferred directions.

Analytical solutions are only known in the mean-
field limit which corresponds to infinite dimensionality or,
equivalently, infinite-range interactions. For the realistic
case of short-ranged spin-glasses in finite dimensions d
(= 3 in most physical applications) this may serve as a
guideline, but for quantitative predictions we have to rely
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either on numerical methods such as Monte-Carlo simula-
tions or on systematic expansion techniques such as high-
temperature power series. The two approaches are quite
complementary – each with its own drawbacks and merits.

Due to the competing interactions the phase space of
spin-glasses is highly non-trivial with many important re-
gions separated by high free-energy barriers. Monte-Carlo
simulations are hence extremely difficult to equilibrate
and the largest simulated systems are consequently usu-
ally quite small (of the order of 103 to 203). Refined up-
date schemes such as multicanonical sampling [11], simu-
lated and parallel tempering simulations [12,13] and the
recently proposed multi-overlap method [14] target at this
problem, but the numerical effort remains huge. Moreover,
to model the quenched disorder properly, many replica
(of the order of 100 to 10 000) with independently drawn
random couplings have to be simulated. Since this is ob-
viously an extremely time demanding task, scanning the
two-dimensional parameter space of p and d is virtually
impossible by this approach.

Using high-temperature series expansions, on the other
hand, one can obtain for many quantities closed expres-
sions in p and d up to a certain order in the inverse temper-
ature. Here the infinite-volume limit can be taken without
problems and the quenched disorder is treated exactly.
Thus, by analyzing the resulting series, the behavior of
spin-glasses can be monitored even as a continuous func-
tion of p and d. The main problem here is that the avail-
able series expansions are quite short (at any rate much
shorter than for ferromagnetic systems). This introduces



284 The European Physical Journal B

systematic errors of the resulting estimates which are dif-
ficult to control. The obvious way out is trying to extend
the series as far as possible. This, however, is extremely
cumbersome since the number of algebraic manipulations
necessary to calculate the series coefficients blows up dra-
matically with the order of the series (usually at least
exponentially).

Using an automatized star-graph expansion program
package, we recently succeeded to extend the known series
expansions [15–17] for the free energy and the “Edwards-
Anderson” spin-glass susceptibility of the short-range p-
state Potts glass model on general d-dimensional hyper-
cubic lattices by one additional term to order K22 [18,19].
Here K ≡ Jβ ≡ J/kBT denotes the inverse temperature
where kB is the Boltzmann constant and J > 0 is the cou-
pling strength of quenched ferro- and antiferromagnetic
nearest-neighbor “exchange constants” Jij = ± J , which
are randomly drawn from a symmetric bimodal distribu-
tion. In this paper we discuss the quite extensive analy-
sis of the new series expansions in a large region of the
two-dimensional (p, d)-parameter space. The flexibility of
scanning a two-dimensional parameter region enables us
to get an overview of the lower and upper critical dimen-
sions of this model glass.

The rest of the paper is organized as follows. In
Section 2, we briefly recall the model and some of the
theoretical mean-field predictions based on the replica-
breaking formalism. The Section 3 is devoted to a sum-
mary of the analysis techniques used. The results of our
analysis are presented in Section 4, and in Section 5 we
conclude with final remarks and an outlook to future work.

2 The model

The Hamiltonian of the p-state Potts glass model is de-
fined as [5–9,20–22]

H = −
∑
〈ij〉

JijδSiSj , (1)

where the spins Si located at the sites i of a d-dimensional
hypercubic lattice can take the p discrete values Si =
1, 2, . . . , p, the symbol 〈ij〉 indicates nearest-neighbor in-
teractions, δSiSj is the usual Kronecker delta symbol, and
the “exchange constants” (bonds) Jij are quenched, ran-
dom variables. In the following we consider a bimodal dis-
tribution function

Pb(Jij) = xδ(Jij − J) + (1− x)δ(Jij + J), (2)

where x denotes the concentration of ferromagnetic bonds
and J > 0 their strengths. We furthermore specialize to
the symmetric case x = 1/2. In references [18,19] high-
temperature series expansions are derived for the free
energy,

βF = −

ln

∑
{Si}

exp(−βH)


av

, (3)

and the “Edwards-Anderson” (EA) susceptibility

χ = lim
V→∞

1

V

V∑
i,j=1

[〈
1

(p− 1)

(
pδSiSj − 1

)〉2

T

]
av

, (4)

where the angular brackets 〈. . . 〉T refer to thermal aver-
aging and the square brackets [. . . ]av denote the average
over the quenched, random disorder.

The high-temperature series expansion method gives
the free energy and the susceptibility in the form

βF = 1 + a8K
8 + a10K

10 + a12K
12 + ...+ a22K

22 + ...,
(5)

and

χ = 1 + b2K
2 + b4K

4 + b6K
6 + ...+ b22K

22 + ..., (6)

with K = J/kBT . The coefficients ai and bi depend on
both p and d. Notice that due to the averaging over the
symmetric quenched, random disorder no odd powers of
K occur in the expansions (5, 6).

A useful consistency test of the series expansion for χ
is the inversion method which yields a systematic large-
d expansion of the transition point Kc [23]. Since in a
second-order phase transition χ diverges at Kc, one may
solve

1/χ(K) = 0 (7)

recursively with the ansatz

K2 = K2
c = (p2/2d)

(
1 +

∑
i=1

ci

(
1

2d

)i)
. (8)

This yields the power-series expansions in 1/d for K2
c col-

lected in Table 1 for several values of p.
Mean-field theory of the p-state Potts glass predicts for

p ≤ 4 a second-order freezing transition and for p > 4 a
peculiar first-order phase transition with a jump of the
“Edwards-Anderson”order parameter, but smooth mo-
ments and a vanishing latent heat [6–8]. For the infinite-
range Potts glass (where

∑
〈ij〉 −→

∑
i,j in Eq. (1)) with

p = 3 and p = 6 this scenario has recently been con-
firmed in quite extensive Monte-Carlo simulations [24–26].
The critical exponent of the susceptibility at the contin-
uous transition is predicted by mean-field theory to be
γMF = 1.

3 Series analysis techniques

In the literature many different series analysis techniques
have been discussed which all have their own merits and
drawbacks [27]. In general it is difficult to assess the ac-
curacy of a given method when applied to relatively short
series expansions. As a way out of this problem with sys-
tematic errors we repeated the analysis with several dif-
ferent analysis techniques which will be described next.
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Table 1. Expansion coefficients ci of the large-d expansion of the critical couplings K2
c of the p-state Potts glass model,

K2
c = (p2/2d)

[
1 + c1(1/2d) + c2(1/2d)2 + . . .

]
.

ci \ p 2 3 4 5 6 8

c1
5

3

7

4

2

3
−

19

12
−5 −

46

3

c2
443

45

1057

80

158

45
−

3035

144
−

293

5
−

6562

45

c3
394

7

102667

1120

12224

105

81887

224

9802

7

353216

35

c4
676988

1575

4793401

6400

1005308

1575
−

12026449

16128
−

2770508

175
−

768235012

1575

c5
7620925

2079

376949671

56320

66400574

10395
−

77969113625

2128896
−

216036641

385
−

229427448274

10395

To simplify the notation we denote a thermodynamic
function generically by F (z) and assume that its Taylor
expansion around the origin is known up to the Nth order,

F (z) =
N∑
n=0

anz
n + . . . (9)

If the singularity of F (z) at the critical point zc is of the
simple form (z ≤ zc)

F (z) = A(zc − z)−λ + . . . , (10)

with A being a constant, then the logarithmic derivative
of F (z) exhibits a simple pole at z = zc with residue −λ,

d

dz
lnF (z) =

λ

zc − z
+ . . . (11)

This functional form is well-suited for an analysis by
means of Padé approximants [28],

G(z) ≈ [L/M ] ≡
PL(z)

QM (z)

≡
p0 + p1z + p2z

2 + . . .+ pLz
L

1 + q1z + q2z2 + . . .+ qMzM
, (12)

where L+M ≤ N − 1. Note than one order of the initial
series is lost due to the differentiation in (11). It is well-
known [28] that for a large class of functions, the so-called
Stieltjes functions, the residues of the diagonal and next-
to-diagonal Padé sequences [N/N ] and [N/N± 1] converge
to the true critical exponent λ. This is the widely used
Dlog-Padé method.

The dots in (10, 11) indicate correction terms which
can be parameterized as follows:

F (z) = A(zc − z)−λ
[
1+A1(zc−z)∆1+A2(zc−z)+ . . .

]
,

(13)

where ∆1 is the confluent correction exponent and the
second term is a usually weaker analytic correction. Such
a more general critical behavior can be analyzed with two
related methods discussed in detail in reference [29].

In the method referred to as M1, first the leading sin-
gularity is removed by forming

B ≡ λF (z)− (zc − z)
d

dz
F (z)

= A(zc−z)−λ

×
[
∆1A1(zc−z)∆1+A2(zc−z)+ . . .

]
. (14)

Then Padé approximants are applied to the logarithmic
derivative of B,

d

dz
lnB =

A1∆1(λ−∆1)(zc − z)∆1−1 +A2(λ− 1)

(zc − z)(A1∆1(zc − z)∆1−1 +A2)
,

(15)

yielding for fixed zc the confluent correction exponent ∆1

as a function of λ, ∆1 = ∆1(λ). The optimal set of values
for the parameters zc, γ, and ∆1 is determined visually
from the best clustering of different Padé approximants.

In the second method referred to as M2, Padé approx-
imants in a new variable (Roskies transformation),

y = 1− (zc − z)∆1 , (16)

are applied to

G(y) ≡ −∆1(1− y)
d

dy
lnF

= −λ+
A1∆1(zc − z)∆1 +A2(zc − z)

1 +A1(zc − z)∆1 +A2(zc − z)

= −λ+
A1∆1(1− y) +A2(1− y)1/∆1

1 +A1(1− y) + (1− y)1/∆1
, (17)

yielding for fixed zc the critical exponent λ as a function
of ∆1, λ = λ(∆1). Again the clustering of different Padé
approximants is used to select the optimal set of parame-
ters. The two methods are complementary and as stressed
in Appendix D of reference [29] should always be used in
conjunction to avoid spurious results due to so-called res-
onances at values of ∆1/n, n = 2, 3, . . . in the otherwise
more accurate method M2.
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Another generalization of Padé approximants are dif-
ferential Padé approximants (DPA) [27]. Here one starts
from the usual Dlog-Padé method,

d

dz
lnF (z) =

F ′(z)

F (z)
=

PL(z)

QM (z)
+O(zL+M+2), (18)

and rewrites this in the form of a differential equation,

QM (z)F ′(z)− PL(z)F (z) = 0. (19)

This suggested a generalization to [27]

K∑
i=0

Qi(z)

(
z
d

dz

)i
F (z) = SL(z), (20)

where Qi(z) =
∑Mi

j=0 Qi,jz
j, SL(z) =

∑L
j=0 Sjz

j, and∑K
i=0Mi + K + L ≤ N . The inhomogeneity SL can ac-

count for additive analytic terms in F (z). In the present
analysis we employed three special cases:

Q1(z)zF ′(z) +Q0F (z) = S(z)

(DPA1), (21)

Q2(z)z2F ′′(z) +Q1(z)zF ′(z) +Q0F (z) = 0

(DPA2), (22)

Q2(z)z2F ′′(z) +Q1(z)zF ′(z) +Q0F (z) = S(z)

(DPA3). (23)

The more elaborate DPA analysis was mainly used to
double-check the methods M1 and M2 whose implemen-
tation is much more convenient [30].

4 Results

The series expansions of references [18,19] are given for
arbitrary values of p and d. In principle we could, there-
fore, scan the whole continuous two-dimensional parame-
ter space (p, d) with the series analysis. Even though our
analysis methods are highly automatized and supported
by graphical tools a quasi-continuous scanning would be,
however, still quite an elaborate task. Since it is also
questionable if the additional information for non-integer
values of p and d would be really helpful, we confined
ourselves to a grid of integer tuples (p, q) in the range
p = 2, . . . , 8 and d = 2, . . . , 15.

For each parameter tuple we applied the different anal-
ysis techniques described in Section 3. In this way we re-
duced the danger of picking up systematic errors which
may arise due to the finiteness of the series expansions
(and which is sometimes difficult to detect intrinsically).
As our final results we thus usually quote a weighted aver-
age over the different methods, and the error bars are es-
timated from the variation among the different estimates.

As an illustration of this procedure we compare in
Figure 1 the different methods for p = 3 and d = 2, . . . , 15.
Even with the extended series expansion up to the order
K22 we observe a clear tendency that for d smaller than 4
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Fig. 1. Comparison of the analysis methods for p = 3: (3):
M1/M2; (2): Dlog-Padé; (×): DPA1; (4): DPA2; (∗): DPA3.

or 5 the estimates for Kc and γ start to become quite un-
reliable. While for Kc the scatter of the data is still mod-
erate, the critical exponent estimates do depend strongly
on the method used. This is the reason why in most of the
following plots we will exclude the points for d ≤ 4.

By performing the same type of analysis for p = 2, 4, 5,
6, and 8 we obtained the data for Kc and γ collected in Ta-
bles 2 and 3 and graphically presented in Figures 2 and 3.
Let us first discuss the transition points Kc. For large d we
can compare them with the large-d expansion discussed in
Section 2. The resulting curves (using all terms in Tab. 1)
are shown in Figure 4. While for p = 2, 3, and 4 the agree-
ment is satisfactory down to about d = 5, for p = 6 the
1/d-expansion curves down already for relatively large d
due to the negative sign of the expansion coefficients. As
will become clearer in the discussion of the critical expo-
nent γ, this may be taken as an indication that for p > 4
the freezing transition is, in fact, of first-order. For p > 4
we are thus determining effective exponents and transition
temperatures, which should be related to the boundary of
the metastability region at a first-order phase transition.
In general the 1/d-expansion of Kc is expected to be an
asymptotic series which, for any given finite number of
terms should approach the exact answer as 1/d −→ 0. For
small d, on the other hand, it is not expected to converge
as the length of the expansion is increased. In fact, it is
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Table 2. Critical couplings K2
c of the p-state Potts glass in d dimensions.

d \ p 2 3 4 5 6 8

5 0.606(3) 1.92(3) 2.20(3) 2.30(2) 2.50(5) 2.560(2)

6 0.4399(1) 1.101(1) 1.56(1) 1.870(1) 2.05(1) 2.235(5)

7 0.3520(5) 0.843(1) 1.310(5) 1.630(5) 1.790(5) 1.995(5)

8 0.2945(5) 0.694(1) 1.111(2) 1.410(5) 1.5859(1) 1.769(3)

9 0.2550(1) 0.5897(2) 0.9744(1) 1.260(5) 1.441(1) 1.630(1)

10 0.2246(1) 0.5165(5) 0.8593(1) 1.138(2) 1.323(1) 1.529(3)

12 0.1822(1) 0.416(1) 0.7007(2) 0.960(1) 1.149(1) 1.360(4)

15 0.1426(1) 0.3235(5) 0.5502(2) 0.774(1) 0.9610(3) 1.19(2)

Table 3. Critical exponents γ of the susceptibility of the p-state Potts glass in d dimensions.

d \ p 2 3 4 5 6 8

5 1.71(4) 3.8(3) 1.52(4) 0.985(5) 0.82(5) 0.463(4)

6 1.330(2) 1.643(5) 1.188(4) 0.930(1) 0.75(3) 0.461(4)

7 1.19(2) 1.345(5) 1.175(5) 0.97(4) 0.74(2) 0.454(6)

8 1.100(4) 1.226(2) 1.355(10) 0.93(1) 0.7147(3) 0.414(10)

9 1.07(1) 1.1294(4) 1.146(2) 0.93(3) 0.723(3) 0.408(4)

10 1.042(8) 1.0825(5) 1.0900(4) 0.935(10) 0.728(5) 0.426(4)

12 1.004(8) 1.03(2) 1.0475(2) 0.945(20) 0.767(2) 0.440(5)

15 1.00(1) 1.005(20) 0.99(1) 0.9310(5) 0.799(4) 0.49(2)

Table 4. Results for p = 3 of the 1/d-expansion for K2
c .

d K2
c # terms

2 no convergence

3 1.9 1

4 1.8 3

5 1.4 5

6 1.0 5

7 0.81 5

8 0.68 5

9 0.58 5

10 0.51 5

12 0.415 5

15 0.323 5

a well-known property of asymptotic series that for rela-
tively large expansion parameter (small d in our case) a
greater accuracy can be achieved if only a small number of
terms is kept. Optimal estimates can usually be obtained
by truncating the expansion after the smallest term. Our
numerical results for p = 3 following this recipe are shown
in Table 4.

Physically more interesting is the limit of small di-
mensions where the behavior of Kc determines the lower
critical dimension dl, i.e., the dimension below which Kc

tends to infinity. The transition from the disordered phase

to the spin-glass phase then occurs only at zero tempera-
ture. In Figure 5 we have replotted the data of Figure 2
in the form 1/K2

c versus d and included least-squares fits
to the ansatz 1/K2

c = a0 + a1d + a2d
2 + a3d

3. From the
crossing points with the dotted line at 1/K2

c = 0 an es-
timate of dl can be read off. The results are dl ≈ 2.28
for p = 2, 3.20 (p = 3), 1.81 (p = 4), −0.007 (p = 5),
1.06 (p = 6), and −1.81 (p = 8). While one may expect
that the case p = 2 is special due to the spin-reversal
symmetry of the Ising model, one would not expect that
every p yields a different result for dl, and the values for
dl found for p ≥ 5 clearly are unphysical. Nevertheless for
p = 2 and 3 our values are consistent with estimates from
Monte-Carlo simulations. For p = 3 this corroborates the
claim of reference [31] that the three-dimensional model
is at its lower critical dimension where it should exhibit
an essential (exponential type) singularity at zero temper-
ature [32]. In contrast to reference [31], however, we feel
that even the extended series expansions are still to short
to warrant a more detailed investigation of this question.
Our comparative study of dl for many values of p shows
that series analyses of dl for such spin-glass models are
doubtful, with the available number of terms, contrary to
claims in the literature!

Let us now turn to a discussion of the critical ex-
ponent γ. In Figure 3a we observe for any dimension
d ≥ 5 a clear qualitative distinction between the cases
p ≤ 4 and p > 4. While we obtain γ ≥ 1 for p = 2, 3,
and 4, we find γ < 1 for p = 5, 6, and 8. In order to
understand this qualitative difference we performed a
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Fig. 2. The critical coupling K2
c (a) as a function of the di-

mension d: (3): p = 2; (+): p = 3; (2): p = 4; (×): p = 5; (4):
p = 6; (∗): p = 8; (b) as a function of the number of Potts
states p; from top to bottom: (3): d = 5; (+): d = 6; (2):
d = 7; (×): d = 8; (4): d = 9; (∗): d = 10; (3): d = 12; (+):
d = 15.

comparative series analysis of the pure ferromagnetic p-
state Potts model, where the nature of the phase transition
is known quite reliably from other numerical sources (and
in d = 2 exactly). From this study it became clear that
γ < 1 should be interpreted as an effective exponent, sig-
nalizing the metastability boundary at a first-order phase
transition (recall the discussion of Kc). We thus interpret
our data as evidence for a first-order phase transition in
the short-range p-state Potts glass for p > 4 and d ≥ 5. At
this point it is interesting to recall that mean-field theory
of Potts glasses does indeed predict [6–8] a new, unusual
kind of first-order phase transition for p > 4, without la-
tent heat and a part of the order-parameter distribution
function that appears discontinuously at Tc. Although this
type of transition significantly differs from standard first-
order transitions as they occur in the Potts ferromag-
net, one does expect that one should be able to detect
these transitions from a high-temperature series analysis
as well, since the nature of this transition is much closer to
a second-order transition than that of the corresponding
Potts ferromagnet. Unfortunately a more thorough series
analysis of the conjectured first-order phase transitions is
highly nontrivial since the necessary technical tools are

0

1

2

3

4

6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8

Fig. 3. The critical exponent γ of the susceptibility χ (a) as
a function of the dimension d: (3): p = 2; (+): p = 3; (2):
p = 4; (×): p = 5; (4): p = 6; (∗): p = 8; (b) as a function of
the number of Potts states p; from top to bottom: (3): d = 5;
(+): d = 6; (2): d = 7; (×): d = 8; (4): d = 9; (∗): d = 10;
(3): d = 12; (+): d = 15.
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Fig. 4. Comparison of the large-d expansions for K2
c (dashed

lines) with directly obtained estimates: (3): p = 2; (+): p = 3;
(2): p = 4; (×): p = 6.
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Fig. 5. Least-squares fits of the inverse critical couplings to
the ansatz 1/K2

c = a0 + a1d + a2d
2 + a3d

3: (3): p = 2; (+):
p = 3; (2): p = 4; (×): p = 5; (4): p = 6; (∗): p = 8.
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Fig. 6. Critical couplings Kc for p = 3. Comparison of the
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Fig. 7. Critical exponents γ for p = 3. Comparison of
the present results (3) with previous estimates of refer-
ence [31] (2).

not yet well-established for this type of transition (the
response functions exhibit jumps at the transition rather
than power-law singularities, as in the case of a second-
order transition). Accepting thus the γ < 1 criterion, we
see in Figure 3b a clear crossover between the second- and
first-order phase transition regimes between p = 4 and 5
for all investigated dimensions d.

Focusing now on the cases p = 2, 3, and 4, the large-
d behavior of γ determines the upper critical dimension
du at which γ attains the mean-field value of γMF = 1.
By looking at Figure 3a it is obvious that, with the avail-
able series expansions, the only safe statement one can
make is that du ≤ 15. This is certainly not very predic-
tive, but we do not see any decisive difference between
the γ-values at d = 6 (the commonly accepted value of
du), or d = 8 (the value of du tentatively supported in
Ref. [31]), or even d = 10. We rather see in this range
of dimensions a smooth crossover with all estimates for
γ being clearly greater than unity. This is very likely an
artifact of the series expansion method, caused by the fact
that the available series expansions are still rather short.
Only with considerably extended series expansion one may
have a chance to determine du more accurately. It should
be noted that these strong deviations from mean-field be-
havior at very high dimensionalities in these series anal-
yses are rather unusual, for Ising ferromagnets one has
little difficulties to verify mean-field behavior at high di-
mensionalities with very short series, for instance.

Since this conclusion is in apparent disagreement with
the claims of previous studies for p = 2 and 3 we have
examined these special cases in greater detail. Our results
for p = 3 are compared in Figures 6 and 7 with previ-
ous series estimates of references [31,33]. We first notice
that the estimates for Kc of reference [33] clearly deviate.
This, however, is expected since already the underlying
series expansions of reference [33] do not agree with ours.
We emphasize that our series expansion of χ successfully
passed the inversion test which is a necessary and usually
quite stringent (albeit not sufficient) condition that the
expansion is correct. The agreement with the estimates
for Kc of reference [31] (for more details, see Ref. [15]),
on the other hand, is almost perfect. Also this is not too
surprising since the analysis in reference [31] is based on
series expansions with only one term less than the present
ones (and all the others agree). Still, when comparing the
more sensitive critical exponent γ we find some differences
which are particularly pronounced at d = 5. As far as the
upper critical dimension du is concerned, the differences
at d = 8 and 9 are more important, however. Here the es-
timates of reference [31] are significantly lower than ours.
It is then, in fact, tempting to speculate that γ has ap-
proached unity at d = 8, but differs from unity for d < 8,
as was concluded in reference [31]. With the present data,
on the other hand, it is clear that such a claim that d = 8
is a special dimension is not justified at all.

For p = 2 the Potts glass degenerates to the much
simpler and hence more extensively studied “Edwards-
Anderson” Ising spin-glass. In Figures 8 and 9 we com-
pare our results for Kc and γ with previous estimates in
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Fig. 8. Critical couplings Kc for p = 2. Comparison of the
present results (+) with the high-temperature series analysis
of reference [29] (3) and references [34–36] (2).
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Fig. 9. Critical exponents γ for p = 2. Comparison of the
present results (+) with previous results of reference [29] (3)
and references [34–36] (2).

references [29] and [34–37] (using longer series derived for
the special case of the Ising spin-glass model1). Here we
find very good agreement with our results for both the
critical coupling Kc and the critical exponent γ. This in-
dicates that the analysis methods are well under control.
But also here we would hesitate to make any strong state-
ment about the upper critical dimension du (other than
du ≤ 12).

5 Discussion

We have analyzed recently extended high-temperature se-
ries expansions for the susceptibility of general p-state
Potts glass models defined on hypercubic lattices in ar-
bitrary dimensions d. By scanning the two-dimensional

1 For the comparison with the p = 2 Potts glass it should
be noted that the Ising Hamiltonian is usually taken as HIS =
−
∑
〈ij〉 Jijsisj with si = ± 1, leading to the conversion KIS =

K/2, and that in the Ising formulation the expansion variable
is often chosen as w ≡ (tanhKIS)2.

(p, d) parameter space we obtain a qualitative overview
over the properties of this glass model. In particular, the
critical coupling is obtained quite reliably for a wide range
of these parameters, and this should be a useful check for
other methods, e.g., if one attempts to do Monte-Carlo
simulations for high-dimensional lattices. For p > 4 and
d ≥ 5 our analysis suggests a first-order freezing transition
in agreement with predictions of mean-field theory. An ac-
curate estimation of lower and upper critical dimensions
turned out to be hardly possibly with the relatively short
series expansions (up to K22) at hand. In particular we
cannot confirm the claim of reference [31] that du = 8 for
the model with p = 3. We feel that the sharp change of γ
at d = 8 is an artifact of a somewhat incomplete analysis,
and cannot be maintained in the light of the present re-
sults. Our analysis rather shows that, due to the finiteness
of the series expansions, a rather smooth crossover from
γ > 1 to γ = 1 occurs in the range d ≈ 6−12. The available
series expansions are still too short to read off a definite
trend with increasing order. Here longer series may be of
considerable help, and we are currently pursuing this line
of approach with a modified expansion scheme.

Even though quantitative predictions are still some-
what limited, we are convinced that the high-temperature
series expansion approach to complex physical systems
will continue to be a worthwhile and complementary al-
ternative to other methods such as, e.g., numerical simu-
lations. The overhead of generating the series expansions
to sufficiently high order may appear huge, but eventu-
ally this investment may pay off. Among the main ad-
vantages is the possibility to scan a whole two- or higher-
dimensional parameter space without too much labor once
the expansions are known. Other points worth mentioning
in the context of spin-glasses are: quenched averages can
be performed exactly, the thermodynamic limit is always
implied, and the whole phase space is properly taken into
account such that no non-ergodicity problems can affect
equilibrium quantities.
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